OpenGL 学习 (1)

2024-03-02T220734
为了更好的自学游戏开发,所以自学OpenGL

参考资料: https://learnopengl-cn.github.io/

准备工作

使用 Windows10 , 编程语言: C++,IDE: Visual studio 2022

在我们画出出色的效果之前,首先要做的就是创建一个OpenGL上下文(Context)和一个用于显示的窗口。然而,这些操作在每个系统上都是不一样的,OpenGL有意将这些操作抽象(Abstract)出去。这意味着我们不得不自己处理创建窗口,定义OpenGL上下文以及处理用户输入。

幸运的是,有一些库已经提供了我们所需的功能,其中一部分是特别针对OpenGL的。这些库节省了我们书写操作系统相关代码的时间,提供给我们一个窗口和一个OpenGL上下文用来渲染。最流行的几个库有GLUT,SDL,SFML和GLFW。在教程里我们将使用GLFW。你可以随意选用其他类似的库,大多数库的配置方法和GLFW差不多。

GLFW

GLFW是一个专门针对OpenGL的C语言库,它提供了一些渲染物体所需的最低限度的接口。它允许用户创建OpenGL上下文、定义窗口参数以及处理用户输入,对我们来说这就够了。

本节和下一节的目标是把GLFW环境配好能且能够跑起来,并保证它正确创建了OpenGL上下文并显示出一个简单的窗口来让我们随意使用。这篇教程会一步步教你如何获取、编译、链接GLFW库。我们使用的是Microsoft Visual Studio 2019 IDE(操作过程在更新的Visual Studio都是相同的)。如果你用的不是Visual Studio(或者用的是它的旧版本)请不要担心,大多数IDE上的操作都是类似的。
GLFW下载地址

下载源码包之后,将其解压并打开。我们只需要里面的这些内容:

  • 编译生成的库
  • include文件夹

从源代码编译库可以保证生成的库完全适合你的操作系统和CPU的,而预编译的二进制文件则并非总是提供(有时候,即便提供了预编译的二进制文件,也可能不适用于您的系统)。开放源代码所产生问题在于:并不是每个人都用相同的IDE或者构建系统来搞开发,因而提供的项目/解决方案文件可能和一些人的IDE不兼容。所以人们必须使用给定的.c/.cpp和.h/.hpp文件来自己建立项目/解决方案,这是一项很枯燥的工作。但因此也诞生了一个叫做CMake的工具。

CMake

CMake是一个工程文件生成工具。用户可以使用预定义好的CMake脚本,根据自己的选择(像是Visual Studio, Code::Blocks, Eclipse)生成不同IDE的工程文件。这允许我们从GLFW源码创建一个Visual Studio 2019工程文件,之后进行编译。首先,我们需要从这里下载安装CMake。

当CMake安装成功后,你可以选择从命令行或者GUI启动CMake,由于我们不想让事情变得太过复杂,我们选择用GUI。CMake需要一个源代码目录和一个存放编译结果的目标文件目录。源代码目录我们选择GLFW的源代码的根目录,然后我们新建一个 build 文件夹,选中作为目标目录。

CMAKE

在设置完源代码目录和目标目录之后,点击Configure(设置)按钮,让CMake读取设置和源代码。我们接下来需要选择工程的生成器,由于我们使用的是Visual Studio 2019,我们选择 Visual Studio 16 选项(因为Visual Studio 2019的内部版本号是16)。CMake会显示可选的编译选项用来配置最终生成的库。这里我们使用默认设置,并再次点击Configure(设置)按钮保存设置。保存之后,点击Generate(生成)按钮,生成的工程文件会在你的build文件夹中。

编译

在build文件夹里可以找到GLFW.sln文件,用Visual Studio 2019打开。因为CMake已经配置好了项目,并按照默认配置将其编译为64位的库,所以我们直接点击Build Solution(生成解决方案)按钮,然后在build/src/Debug文件夹内就会出现我们编译出的库文件glfw3.lib。

库生成完毕之后,我们需要让IDE知道库和头文件的位置。有两种方法:

  • 找到IDE或者编译器的/lib和/include文件夹,添加GLFW的include文件夹里的文件到IDE的/include文件夹里去。用类似的方法,将glfw3.lib添加到/lib文件夹里去。虽然这样能工作,但这不是推荐的方式,因为这样会让你很难去管理库和include文件,而且重新安装IDE或编译器可能会导致这些文件丢失。
  • 推荐的方式是建立一个新的目录包含所有的第三方库文件和头文件,并且在你的IDE或编译器中指定这些文件夹。我个人会使用一个单独的文件夹,里面包含Libs和Include文件夹,在这里存放OpenGL工程用到的所有第三方库和头文件。这样我的所有第三方库都在同一个位置(并且可以共享至多台电脑)。然而这要求你每次新建一个工程时都需要告诉IDE/编译器在哪能找到这些目录。
    完成上面步骤后,我们就可以使用GLFW创建我们的第一个OpenGL工程了!

我们的第一个工程

首先,打开Visual Studio,创建一个新的项目。如果VS提供了多个选项,选择Visual C++,然后选择Empty Project(空项目)(别忘了给你的项目起一个合适的名字)。由于我们将在64位模式中执行所有操作,而新项目默认是32位的,因此我们需要将Debug旁边顶部的下拉列表从x86更改为x64:
first project

现在我们终于有一个空的工作空间了,开始创建我们第一个OpenGL程序吧!

链接

为了使我们的程序使用GLFW,我们需要把GLFW库链接(Link)进工程。这可以通过在链接器的设置里指定我们要使用glfw3.lib来完成,但是由于我们将第三方库放在另外的目录中,我们的工程还不知道在哪寻找这个文件。于是我们首先需要将我们放第三方库的目录添加进设置。

要添加这些目录(需要VS搜索库和include文件的地方),我们首先进入Project Properties(工程属性,在解决方案窗口里右键项目),然后选择VC++ Directories(VC++ 目录)选项卡(如下图)。在下面的两栏添加目录:
2024-03-02T215724
这里你可以把自己的目录加进去,让工程知道到哪去搜索。你需要手动把目录加在后面,也可以点击需要的位置字符串,选择选项,之后会出现类似下面这幅图的界面,图是选择Include Directories(包含目录)时的界面:
2024-03-02T215738
这里可以添加任意多个目录,IDE会从这些目录里寻找头文件。所以只要你将GLFW的Include文件夹加进路径中,你就可以使用<GLFW/..>来引用头文件。库文件夹也是一样的。

现在VS可以找到所需的所有文件了。最后需要在Linker(链接器)选项卡里的Input(输入)选项卡里添加glfw3.lib这个文件:
2024-03-02T215801

要链接一个库我们必须告诉链接器它的文件名。库名字是glfw3.lib,我们把它加到Additional Dependencies(附加依赖项)字段中(手动或者使用选项都可以)。这样GLFW在编译的时候就会被链接进来了。除了GLFW之外,你还需要添加一个链接条目链接到OpenGL的库,但是这个库可能因为系统的不同而有一些差别。

  • Windows上的OpenGL库

    如果你是Windows平台,opengl32.lib已经包含在Microsoft SDK里了,它在Visual Studio安装的时候就默认安装了。由于这篇教程用的是VS编译器,并且是在Windows操作系统上,我们只需将opengl32.lib添加进连接器设置里就行了。值得注意的是,OpenGL库64位版本的文件名仍然是opengl32.lib(和32位版本一样),虽然很奇怪但确实如此。
  • Linux上的OpenGL库

    在Linux下你需要链接libGL.so库文件,这需要添加-lGL到你的链接器设置中。如果找不到这个库你可能需要安装Mesa,NVidia或AMD的开发包,这部分因平台而异(而且我也不熟悉Linux)就不仔细讲解了

接下来,如果你已经添加GLFW和OpenGL库到连接器设置中,你可以用如下方式添加GLFW头文件:

1
#include <GLFW\glfw3.h>

GLFW的安装与配置就到此为止。

GLAD

到这里还没有结束,我们仍然还有一件事要做。因为OpenGL只是一个标准/规范,具体的实现是由驱动开发商针对特定显卡实现的。由于OpenGL驱动版本众多,它大多数函数的位置都无法在编译时确定下来,需要在运行时查询。所以任务就落在了开发者身上,开发者需要在运行时获取函数地址并将其保存在一个函数指针中供以后使用。取得地址的方法因平台而异,在Windows上会是类似这样:

1
2
3
4
5
6
7
// 定义函数原型
typedef void (*GL_GENBUFFERS) (GLsizei, GLuint*);
// 找到正确的函数并赋值给函数指针
GL_GENBUFFERS glGenBuffers = (GL_GENBUFFERS)wglGetProcAddress("glGenBuffers");
// 现在函数可以被正常调用了
GLuint buffer;
glGenBuffers(1, &buffer);

你可以看到代码非常复杂,而且很繁琐,我们需要对每个可能使用的函数都要重复这个过程。幸运的是,有些库能简化此过程,其中GLAD是目前最新,也是最流行的库。

配置GLAD库

GLAD是一个开源的库,它能解决我们上面提到的那个繁琐的问题。GLAD的配置与大多数的开源库有些许的不同,GLAD使用了一个在线服务。在这里我们能够告诉GLAD需要定义的OpenGL版本,并且根据这个版本加载所有相关的OpenGL函数。

打开GLAD的在线服务,将语言(Language)设置为C/C++,在API选项中,选择3.3以上的OpenGL(gl)版本(我们的教程中将使用3.3版本,但更新的版本也能用)。之后将模式(Profile)设置为Core,并且保证选中了生成加载器(Generate a loader)选项。现在可以先(暂时)忽略扩展(Extensions)中的内容。都选择完之后,点击生成(Generate)按钮来生成库文件。

GLAD现在应该提供给你了一个zip压缩文件,包含两个头文件目录,和一个glad.c文件。将两个头文件目录(glad和KHR)复制到你的Include文件夹中(或者增加一个额外的项目指向这些目录),并添加glad.c文件到你的工程中, 记住这一步,非常重要,否则会导致无法成功启动

经过前面的这些步骤之后,你就应该可以将以下的指令加到你的文件顶部了:
#include <glad/glad.h>

点击编译按钮应该不会给你提示任何的错误,到这里我们就已经准备好继续学习下一节去真正使用GLFW和GLAD来设置OpenGL上下文并创建一个窗口了。

Hello World

让我们试试能不能让GLFW正常工作。首先,新建一个.cpp文件,然后把下面的代码粘贴到该文件的最前面。

1
2
#include <glad/glad.h>
#include <GLFW/glfw3.h>
请确认是在包含GLFW的头文件之前包含了GLAD的头文件。GLAD的头文件包含了正确的OpenGL头文件(例如GL/gl.h),所以需要在其它依赖于OpenGL的头文件之前包含GLAD。

初始化

首先我们需要初始化OpenGL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
int main()
{
// 初始化GLFW
glfwInit();
// glfwWindowHint函数来配置GLFW,
// 由于本站的教程都是基于OpenGL 3.3版本展开讨论的,所以我们需要告诉GLFW我们要使用的OpenGL版本是3.3,这样GLFW会在创建OpenGL上下文时做出适当的调整。
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
//glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
// 上面注释掉的代码是在Mac OS 上使用时,需要的代码。

return 0;
}

窗口

接下来,我们需要创建一个窗口对象,这个窗口对象存放了所有和窗口相关的数据,而且会被GLFW的其他函数频繁地用到。类型为GLFWwindow

1
2
3
4
5
6
7
8
GLFWwindow* window = glfwCreateWindow(800, 600, "LearnOpenGL", NULL, NULL);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glfwCreateWindow函数需要窗口的宽和高作为它的前两个参数。第三个参数表示这个窗口的名称(标题),这里我们使用"LearnOpenGL",当然你也可以使用你喜欢的名称。最后两个参数我们暂时忽略。这个函数将会返回一个GLFWwindow对象,我们会在其它的GLFW操作中使用到。创建完窗口我们就可以通知GLFW将我们窗口的上下文设置为当前线程的主上下文了。

GLAD

在之前的教程中已经提到过,GLAD是用来管理OpenGL的函数指针的,所以在调用任何OpenGL的函数之前我们需要初始化GLAD。

1
2
3
4
5
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Failed to initialize GLAD" << std::endl;
return -1;
}

视口

在我们开始渲染之前还有一件重要的事情要做,我们必须告诉OpenGL渲染窗口的尺寸大小,即视口(Viewport),这样OpenGL才只能知道怎样根据窗口大小显示数据和坐标。我们可以通过调用glViewport函数来设置窗口的维度(Dimension):

1
glViewport(0, 0, 800, 600);

glViewport函数前两个参数控制窗口左下角的位置。第三个和第四个参数控制渲染窗口的宽度和高度(像素)。

我们实际上也可以将视口的维度设置为比GLFW的维度小,这样子之后所有的OpenGL渲染将会在一个更小的窗口中显示,这样子的话我们也可以将一些其它元素显示在OpenGL视口之外。

OpenGL幕后使用glViewport中定义的位置和宽高进行2D坐标的转换,将OpenGL中的位置坐标转换为你的屏幕坐标。例如,OpenGL中的坐标(-0.5, 0.5)有可能(最终)被映射为屏幕中的坐标(200,450)。注意,处理过的OpenGL坐标范围只为-1到1,因此我们事实上将(-1到1)范围内的坐标映射到(0, 800)和(0, 600)。

然而,当用户改变窗口的大小的时候,视口也应该被调整。我们可以对窗口注册一个回调函数(Callback Function),它会在每次窗口大小被调整的时候被调用。这个回调函数的原型如下:

1
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
这个函数类似于 `LIBGdx`中,`Screen`组件中的reSize方法,需要重新计算视窗大小

这个帧缓冲大小函数需要一个GLFWwindow作为它的第一个参数,以及两个整数表示窗口的新维度。每当窗口改变大小,GLFW会调用这个函数并填充相应的参数供你处理。这里我们实现这个函数:

1
2
3
4
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}

我们还需要注册这个函数,告诉GLFW我们希望每当窗口调整大小的时候调用这个函数:

1
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);

这里需要手动使用上面的代码将窗口回调方法注册到openGL里面。
当窗口被第一次显示的时候framebuffer_size_callback也会被调用(初始化)。对于视网膜(Retina)显示屏,width和height都会明显比原输入值更高一点。

我们还可以将我们的函数注册到其它很多的回调函数中。比如说,我们可以创建一个回调函数来处理手柄输入变化,处理错误消息等。我们会在创建窗口之后,渲染循环初始化之前注册这些回调函数。

窗口

我们可不希望只绘制一个图像之后我们的应用程序就立即退出并关闭窗口。我们希望程序在我们主动关闭它之前不断绘制图像并能够接受用户输入。因此,我们需要在程序中添加一个while循环,我们可以把它称之为渲染循环(Render Loop),它能在我们让GLFW退出前一直保持运行。下面几行的代码就实现了一个简单的渲染循环:

1
2
3
4
5
while(!glfwWindowShouldClose(window))
{
glfwSwapBuffers(window);
glfwPollEvents();
}
  • glfwWindowShouldClose函数在我们每次循环的开始前检查一次GLFW是否被要求退出,如果是的话,该函数返回true,渲染循环将停止运行,之后我们就可以关闭应用程序。
  • glfwPollEvents函数检查有没有触发什么事件(比如键盘输入、鼠标移动等)、更新窗口状态,并调用对应的回调函数(可以通过回调方法手动设置)。
  • glfwSwapBuffers函数会交换颜色缓冲(它是一个储存着GLFW窗口每一个像素颜色值的大缓冲),它在这一迭代中被用来绘制,并且将会作为输出显示在屏幕上。

双缓冲(Double Buffer)

应用程序使用单缓冲绘图时可能会存在图像闪烁的问题。 这是因为生成的图像不是一下子被绘制出来的,而是按照从左到右,由上而下逐像素地绘制而成的。最终图像不是在瞬间显示给用户,而是通过一步一步生成的,这会导致渲染的结果很不真实。为了规避这些问题,我们应用双缓冲渲染窗口应用程序。前缓冲保存着最终输出的图像,它会在屏幕上显示;而所有的的渲染指令都会在后缓冲上绘制。当所有的渲染指令执行完毕后,我们交换(Swap)前缓冲和后缓冲,这样图像就立即呈显出来,之前提到的不真实感就消除了。

释放资源

当渲染循环结束后我们需要正确释放/删除之前的分配的所有资源。我们可以在main函数的最后调用glfwTerminate函数来完成。

1
2
glfwTerminate();
return 0;

这样便能清理所有的资源并正确地退出应用程序。现在你可以尝试编译并运行你的应用程序了,如果没做错的话,你将会看到如下的输出:
2024-03-03T001348

如果你看见了一个非常无聊的黑色窗口,那么就对了!我们的Hello World至此成功。

如果程序编译有问题,请先检查连接器选项是否正确,IDE中是否导入了正确的目录(前面教程解释过)。并且请确认你的代码是否正确.

输入

我们同样也希望能够在GLFW中实现一些输入控制,这可以通过使用GLFW的几个输入函数来完成。我们将会使用GLFW的glfwGetKey函数,它需要一个窗口以及一个按键作为输入。这个函数将会返回这个按键是否正在被按下。我们将创建一个processInput函数来让所有的输入代码保持整洁。

1
2
3
4
5
void processInput(GLFWwindow *window)
{
if(glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}

这里我们检查用户是否按下了返回键(Esc)(如果没有按下,glfwGetKey将会返回GLFW_RELEASE。如果用户的确按下了返回键,我们将通过使用glfwSetwindowShouldClose把WindowShouldClose属性设置为 true来关闭GLFW。下一次while循环的条件检测将会失败,程序将关闭。

这里需要记住 glfwGetKey 函数

我们接下来在渲染循环的每一个迭代中调用processInput

1
2
3
4
5
6
7
while (!glfwWindowShouldClose(window))
{
processInput(window);

glfwSwapBuffers(window);
glfwPollEvents();
}

这就给我们一个非常简单的方式来检测特定的键是否被按下,并在每一帧做出处理。

渲染

我们要把所有的渲染(Rendering)操作放到渲染循环中,因为我们想让这些渲染指令在每次渲染循环迭代的时候都能被执行。代码将会是这样的:

1
2
3
4
5
6
7
8
9
10
11
12
13
// 渲染循环
while(!glfwWindowShouldClose(window))
{
// 输入
processInput(window);

// 渲染指令
...

// 检查并调用事件,交换缓冲
glfwPollEvents();
glfwSwapBuffers(window);
}

为了测试一切都正常工作,我们使用一个自定义的颜色清空屏幕。在每个新的渲染迭代开始的时候我们总是希望清屏,否则我们仍能看见上一次迭代的渲染结果(这可能是你想要的效果,但通常这不是)。我们可以通过调用glClear函数来清空屏幕的颜色缓冲,它接受一个缓冲位(Buffer Bit)来指定要清空的缓冲,可能的缓冲位有GL_COLOR_BUFFER_BITGL_DEPTH_BUFFER_BITGL_STENCIL_BUFFER_BIT。由于现在我们只关心颜色值,所以我们只清空颜色缓冲。

1
2
glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);

注意,除了glClear之外,我们还调用了glClearColor来设置清空屏幕所用的颜色。当调用glClear函数,清除颜色缓冲之后,整个颜色缓冲都会被填充为glClearColor里所设置的颜色。在这里,我们将屏幕设置为了类似黑板的深蓝绿色。

2024-03-03T004349

你应该能够回忆起来我们在 OpenGL 这节教程的内容,glClearColor函数是一个状态设置函数,而glClear函数则是一个状态使用的函数,它使用了当前的状态来获取应该清除为的颜色。